Modèle linéaire de prédiction fonctionnelle sur données environnementales : choix de modélisation

  • Séverine Bayle
  • Pascal Monestiez
  • David Nerini

Résumé

L’analyse de données fonctionnelles est devenue ces dernières années un champ d’étude important en statistiques, car de plus en plus de données observées dans différents domaines se trouvent sous forme de courbes (météorologie, économie, . . . ). Un des outils de l’analyse de données fonctionnelles est le modèle linéaire "pleinement" fonctionnel, qui est utilisé dans le cas où la variable à prédire et la variable prédictive sont toutes les deux des courbes. Ce modèle a fait l’objet de recherches théoriques approfondies, mais les applications l’utilisant restent peu nombreuses à ce jour. Nous proposons dans cet article une démarche méthodologique à travers un exemple d’application de ce modèle sur des profils océanographiques de lumière et de Chlorophylle a. Il est utilisé ici pour prédire des profils de Chlorophylle a à partir des dérivées des profils de luminosité. La démarche méthodologique permet de clarifier les choix de modélisation que nous avons eu à faire pour traiter les profils océanographiques. Les questionnements à travers notre étude de cas concernent entre autres le choix du type et du nombre de fonctions de base à utiliser, le choix de la valeur du paramètre de lissage, ainsi que le critère pour évaluer la qualité de l’ajustement. Nous montrons que l’utilisation du modèle linéaire fonctionnel permet d’obtenir une bonne qualité de reconstruction pour accéder aux variations hautes fréquences des profils de Chlorophylle a à fine échelle.
Publiée
2014-04-12
Rubrique
Numéro spécial : analyse des données fonctionnelles